Exact and approximation algorithms for the complementary maximal strip recovery problem
نویسندگان
چکیده
Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G∗ 2 , can be partitioned into the same set of maximal substrings of length greater than or equal to two. Such substrings can occur in the reversal and negated form. The complementary maximal strip recovery (CMSR) problem is to delete the minimum number of markers from both G1 and G2 for the same purpose, with its optimization goal exactly complementary to maximizing the total number of gene markers retained in the final maximal substrings. Both MSR and CMSR have been shown NP-hard and APX-hard. A 4-approximation algorithm is known for the MSR problem, but no constant ratio approximation algorithm for CMSR. In this paper, we present an O(3n)-time fixed-parameter tractable (FPT) algorithm, where k is the size of the optimal solution, and a 3-approximation algorithm for the CMSR problem.
منابع مشابه
A Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem
In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...
متن کاملAn Improved Approximation Algorithm for the Complementary Maximal Strip Recovery Problem
Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G ∗ 2, can be partitioned into the same set of maximal strips, which are common substrings of length greater than or equal to two. The complementary maxi...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملExact algorithms for solving a bi-level location–allocation problem considering customer preferences
The issue discussed in this paper is a bi-level problem in which two rivals compete in attracting customers and maximizing their profits which means that competitors competing for market share must compete in the centers that are going to be located in the near future. In this paper, a nonlinear model presented in the literature considering customer preferences is linearized. Customer behavior ...
متن کاملMaximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms
Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-intersecting strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 23 شماره
صفحات -
تاریخ انتشار 2012